Evolution of osmotic stress signaling via MAP kinase cascades.

نویسندگان

  • D Kültz
  • M Burg
چکیده

Cells respond to changes in osmotic pressure with compensatory molecular adaptations that allow them to re-establish homeostasis of osmotically disturbed aspects of cell structure and function. In addition, some cell types respond to osmotic stress by changing their phenotype or, if their tolerance threshold is exceeded, by initiating programmed cell death. To understand how cells achieve these different types of adaptive response to osmotic stress, it is necessary to identify the key elements of osmosensory signal transduction and to analyze the complex networks that process osmotic stimuli imposed upon cells by their environment. This review highlights mitogen-activated protein kinase (MAPK) cascades as important intracellular signal-transduction pathways activated in response to changes in osmolality. A unifying theme of osmotic stress signaling via MAPKs seems to be regulation of the cell cycle as part of the cellular stress response. This very important physiological capacity may have been conserved throughout evolution as a major function of MAPKs from many different subfamilies. The evidence for this conjecture is discussed, and our current knowledge about osmotic stress signaling pathways in yeast, animals and plants is briefly reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Innate Immunity Pathway in the Moss Physcomitrella patens.

MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMP...

متن کامل

Evolution of Osmosensory MAP Kinase Signaling Pathways1

SYNOPSIS. Mitogen-activated protein (MAP) kinases constitute a large family of proteins with many functions. They are represented by a multitude of paralogous isoforms in yeast, vertebrates, and other eukaryotes. A phylogenetically conserved function of MAP kinases is to carry osmotic signals from sensory to target elements of cells. Even though this function of MAP kinases is ubiquitous and ch...

متن کامل

The mitogen-activated protein (MAP) kinase p38 and its upstream activator MAP kinase kinase 6 are involved in the activation of signal transducer and activator of transcription by hyperosmolarity.

Environmental stress (e.g. aniso-osmolarity and UV light), hypoxia/reoxygenation, and reactive oxygen species activate intracellular signaling cascades such as the "stress-responsive" mitogen-activated protein kinases and nuclear factor kappaB. We have recently shown that the Janus tyrosine kinase/signal transducer and activator of transcription (Jak/STAT) pathway is ligand-independently activa...

متن کامل

Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought.

Yeast and animals use mitogen-activated protein (MAP) kinase cascades to mediate stress and extracellular signals. We have tested whether MAP kinases are involved in mediating environmental stress responses in plants. Using specific peptide antibodies that were raised against different alfalfa MAP kinases, we found exclusive activation of p44MMK4 kinase in drought- and cold-treated plants. p44M...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 201 Pt 22  شماره 

صفحات  -

تاریخ انتشار 1998